Brachypodium as an experimental system for the study of stem parenchyma biology in grasses
نویسندگان
چکیده
Stem parenchyma is a major cell type that serves key metabolic functions for the plant especially in large grasses, such as sugarcane and sweet sorghum, where it serves to store sucrose or other products of photosynthesis. It is therefore desirable to understand the metabolism of this cell type as well as the mechanisms by which it provides its function for the rest of the plant. Ultimately, this information can be used to selectively manipulate this cell type in a controlled manner to achieve crop improvement. In this study, we show that Brachypodium distachyon is a useful model system for stem pith parenchyma biology. Brachypodium can be grown under condition where it resembles the growth patterns of important crops in that it produces large amounts of stem material with the lower leaves senescing and with significant stores of photosynthate located in the stem parenchyma cell types. We further characterize stem plastid morphology as a function of tissue types, as this organelle is central for a number of metabolic pathways, and quantify gene expression for the four main classes of starch biosynthetic genes. Notably, we find several of these genes differentially regulated between stem and leaf. These studies show, consistent with other grasses, that the stem functions as a specialized storage compartment in Brachypodium.
منابع مشابه
Cell wall composition throughout development for the model grass Brachypodium distachyon
Temperate perennial grasses are important worldwide as a livestock nutritive energy source and a potential feedstock for lignocellulosic biofuel production. The annual temperate grass Brachypodium distachyon has been championed as a useful model system to facilitate biological research in agriculturally important temperate forage grasses based on phylogenetic relationships. To physically corrob...
متن کاملNucleotide diversity and linkage disequilibrium in antioxidant genes of Brachypodium distachyon.
Brachypodium distachyon (Brachypodium) is a powerful model system for studying cereal, bioenergy, forage, and turf grasses. Nucleotide diversity (π) and linkage disequilibrium (LD) in candidate genes involved in the antioxidative pathways in this species are not known. The average π for CAT encoding catalase, GPX encoding glutathione peroxidase, DHAR encoding dehydroascorbate reductase, MDHAR e...
متن کاملGenome sequencing and analysis of the model grass Brachypodium distachyon
Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and so...
متن کاملGenome sequencing and analysis of the model grass Brachypodium distachyon
Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and so...
متن کاملGenome sequencing and analysis of the model grass Brachypodium distachyon
Three subfamilies of grasses, the Ehrhartoideae, Panicoideae and Pooideae, provide the bulk of human nutrition and are poised to become major sources of renewable energy. Here we describe the genome sequence of the wild grass Brachypodium distachyon (Brachypodium), which is, to our knowledge, the first member of the Pooideae subfamily to be sequenced. Comparison of the Brachypodium, rice and so...
متن کامل